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Abstract
By using theoretical analysis and computer simulations, we develop the Watts–
Strogatz network model by including degree distribution, in an attempt to
improve the comparison between characteristic path lengths and clustering
coefficients predicted by the original Watts–Strogatz network model and those
of the real networks with the small-world property. Good agreement between
the predictions of the theoretical analysis and those of the computer simulations
has been shown. It is found that the developed Watts–Strogatz network
model can fit the real small-world networks more satisfactorily. Some other
interesting results are also reported by adjusting the parameters in a model
degree-distribution function. The developed Watts–Strogatz network model is
expected to help in the future analysis of various social problems as well as
financial markets with the small-world property.

PACS numbers: 89.75.Hc, 05.50.+q, 87.23.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Network analysis is a powerful approach to analyse social problems and financial markets
[1–17]. So far, one has discovered two fundamental properties of real complex networks:
the small-world property (One can reach a given node from another one, following the path
with the smallest number of links between the nodes, in a very small number of steps, which
corresponds to the ‘six degrees of separation’ in social networks [3].) and the scale-free
properties. (The probability distribution of the number of links per node, namely, the degree
distribution, can be represented by a power law, i.e., scale free [3].) The Watts–Strogatz
network model has been introduced by Watts and Strogatz [1, 18], to deal with the networks
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with the small-world property, namely, the characteristics of both ‘high network clustering’
and ‘short characteristic path length’ [2]. The model consists of a regular lattice, typically
a one-dimensional lattice with almost periodic boundary conditions (which means that each
vertex is connected to almost a fixed number of vertices nearest to it) and a small number of
‘shortcut’ bonds added between randomly chosen vertices.

In the description of the small-world property, ‘high network clustering’ means that two
individuals are much more likely to be friends with one another if they have one or more other
friends in common, while ‘short characteristic path length’ indicates that the average distance
increases with the number of nodes in the networks logarithmically. Throughout the paper, we
let l (or l′) represent the (average) characteristic path length, C (or C ′) the clustering coefficient
and k (or k′ = k/2) the number of closest vertices or sub-vertices connected to each vertex
or sub-vertex. In the Watts–Strogatz network model, it is proved that one can add a small
number of shortcuts to reduce l in a huge amount while C almost remains the same [1]. By
using actual living models that have the small-world property, one may get some important
information for the characteristics of l and C. For instance, it has been found that the Internet [3]
and the dissemination of diseases [3] have the small-world property so that one can improve
the safety of the Internet by increasing some links between some irrelevant websites and
reduce the range of dissemination of diseases only by reducing the contact between unfamiliar
people. So far, there have been some theoretical methods to calculate l [2] and C [3]. After
the comparison of l and C between many real networks with the small-world property and
the Watts–Strogatz network model [4–8], one [3] reported some deviations of l and C. For
overcoming the deviations, a crucial reason might be that in the Watts–Strogatz network model
one requires each vertex to connect a fixed number of closest vertices (namely, fixed k). This
may lead to the deviations, because in real small-world networks all members (also called
vertices) cannot have even importance, thus yielding different number of closest members
naturally (i.e., different k). We shall develop the Watts–Strogatz network model by taking
into account the influence of degree distribution. Here the Watts–Strogatz network model
is developed by introducing degree distribution only for the real networks with the small-
world property. In doing so, our focus is on the improvement of the comparison between
characteristic path lengths and clustering coefficients predicted by the original Watts–Strogatz
network model and those of the real networks with the small-world property. Thus, the
developed Watts–Strogatz network model will become more flexible due to the introduction of
degree distribution. Based on the theory put forth in [2, 3], we shall develop some theoretical
methods to calculate the characteristic path length l′ and the clustering coefficient C ′, which
will be shown to agree with our computer simulations. Finally, favourable agreement will
also be shown between the Watts–Strogatz network model developed by including degree
distribution and some real networks with the small-world property, while comparing their
corresponding clustering coefficients.

2. Problems arising from some real small-world networks when elaborated by the
Watts–Strogatz network model

The Watts–Strogatz network model describes networks between a regular network and a
random one defined as follows. One starts from a ring lattice with n vertices and each
connects to its k nearest vertices. We can enumerate every edge and use p as the probability of
rewiring the edge which is called a shortcut. If p equals 0, we call the network a regular network
while if p equals 1 we call it a random one. Watts and Stogatz found that for intermediate
values of p, the network is a small-world network: highly clustered like a regular network,
yet with a small characteristic path length, like a random network [9]. In the small-world
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Table 1. Comparison between the Watts–Strogatz network model and some real networks. Here n
means the number of vertices [3], k takes the average value [3], C the clustering coefficient, C(w−s)

the results obtained by theoretical formula (i.e., equation (2) for the Watts–Strogatz network model),
C(actual) the results extracted from the real networks and C(random) the results obtained from the
random network model. Through the comparison between the clustering coefficients C(actual) of
the real networks and those C(random) of the relevant random network model, the real networks
were shown to have some small-world network characteristics [3].

Real networks n k C(w − s) C(actual) C(random)

LANL co-authorship [4, 5] 52 909 9.7 0.58 0.43 0.00 018
Math. co-authorship [6] 70 975 3.9 0.48 0.59 0.000 054
Neurosci. co-authorship [6] 209 293 11.5 0.60 0.76 0.000 055
E. coli, substrate graph [7] 282 7.35 0.54 0.32 0.026
Words, co-occurrence [8] 460 902 70.13 0.69 0.44 0.0001
C. Elegans [1] 282 14 0.62 0.28 0.005

network, the shortest characteristic path length of all vertex–vertex path is denoted as l(p) and
the clustering coefficient as C(p).

For the Watts–Strogatz network model, one has established two theoretical formulae for
calculating l [2] and C [3]

loriginal(ξ) = 1

2
√

ξ 2 + 2ξ
tanh−1 ξ√

ξ 2 + 2ξ
, (1)

C(k) = 3k(k − 1)

2k(2k − 1) + 8pk2 + 4p2k2
, (2)

where ξ = npk/2.

It has been proved that some real networks have the small-world property [3–8], so we
are allowed to compare some of these small-world networks with the networks described by
the Watts–Strogatz network model [3]. We use the actual data of l (in the real networks) and
the formula for l (equation (1) for the Watts–Strogatz network model) to extract the relevant
p. Then we use the extracted p to calculate the clustering coefficient C. Therefore, we obtain
a theoretical C according to the Watts–Strogatz network model and an actual C according to
the data (note the actual C denotes the real clustering coefficient of the real networks with the
small-world property).

In table 1, the selected real small-world networks have their specific clustering coefficients
C(actual), which, unfortunately, are quite different from those C(w−s) predicted by the Watts–
Strogatz network model. Such deviation might be due to the fixed number k of connections
used in the Watts–Strogatz network model, because, in reality, no one can guarantee that k
always keeps unchanged for a kind of specific networks. In this sense, a very reasonable
assumption is that k could be changeable for different vertices in such kind of networks, as
implied by the comparison in table 1. Thus, it seems both necessary and instructive to develop
the Watts–Strogatz network model by introducing degree distribution.

3. The Watts–Strogatz network model developed by including degree distribution

Now we are in a position to develop the Watts–Strogatz network model by including degree
distribution. Let us create a normal Watts–Strogatz network model (with many vertices,
each connecting to the two nearest neighbours, so k = 2) and then replace each vertex by
another (sub-)Watts–Strogatz network with a specific but unique k. Two of these (sub-)Watts–
Strogatz networks that correspond to connected vertices are then connected by randomly
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Figure 1. Left panel: schematic graph showing the vertices of the networks with the number of
connections k = 2 (or k′ = 1); right panel: schematic graph showing the actual vertices of the
network (each vertex contains an aggregation of sub-vertices in which each sub-vertex has the
same k (or k′)).

choosing and connecting two sub-vertices, one in each (sub-)Watts–Strogatz network. In
other words, we make a standard small-world network (left panel of figure 1), but each vertex
is actually composed of a small-world sub-network (right panel of figure 1). That is, every
‘vertex’ only includes all actual ‘sub-vertices’ that have the same number of connections
to closest sub-vertices (right panel of figure 1). It should be noted that the sub-vertices in
different vertices have different number of connections to closest sub-vertices (right panel
of figure 1). Therefore, in doing so, we can obtain small-world networks with the degree
distribution. We determine the fraction of the number of sub-vertices of each k according to
a probability distribution. Following the original Watts–Strogatz network model, we also use
the same probability to rewire edges for all the networks in different vertices. The Watts–
Strogatz network model developed by including degree distribution may fit the phenomenon of
hierarchy better because it makes the sub-vertices of different importance (or with different k),
so it is expected to have potential important applications in social problems. Hence we may
group the nodes that have the same connections (k) together, and then make each group a small-
world network. Apparently, here we also require rewiring some edges and making shortcuts
between vertices, see the right panel of figure 1. For convenience, we assume these vertices
to be linked weakly in order to satisfy the actual situation of the phenomenon of hierarchy.
Here the vertices themselves are further seen to be linked like a small-world network, and
also have shortcuts. In particular, when a vertex is linked with another vertex, this means
that a sub-vertex in the vertex is connected with a sub-vertex of the other (such/sub-vertices
are chosen randomly, see figure 1). To make the links between the vertices weak, we set
the number of connections of one vertex to others to be 2. In the following, we shall take a
distribution function to determine the fraction of the number of sub-vertices with the same k.

For the Watts–Strogatz network model developed by including degree distribution, let us
derive the formulae of l′ (characteristic path length) and C ′ (clustering coefficient). First, to
be more convenient we make the distribution parameter k′ = k/2. Hence, we obtain

l(k′, p) = loriginal(nf (k′)pk′). (3)

Here the distribution function should satisfy the condition

max∑
k′=1

f (k′) = 1. (4)
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Let us divide the whole system by max groups (vertices). The minimum k′ equals 1. And
we denote the maximum k′ as max. Then we can obtain the relevant l′ and C ′ for the
Watts–Strogatz network model developed by including degree distribution.

For treating l′, we separate the problem into two parts. One is the connections between
sub-vertices in each vertex, the other is the vertex–vertex connections. We calculate the whole
characteristic path length of both two parts first and then divide it by the whole number of the
paths. As a result, we obtain

L′
inner =

max∑
k′=1

1

2
[nf (k′)][nf (k′) − 1]l(k′, p)nf (k′), (5)

L′
outer = Nouter

[
maxl(1, p) +

max∑
k′=1

[l(1, p)nf (k′)]/max[max + l(1, p) + 1]

]
, (6)

Nouter = n(n − 1)/2 −
max∑
k′=1

nf (k′)[nf (k′) − 1]/2, (7)

l′ = (L′
inner + L′

outer)/[n(n − 1)/2]. (8)
After we get l′ we start to deal with C ′. Since the connections between the vertices are

very weak as defined (alternatively, the connections of sub-vertices in different vertices are
very few indeed) and k is actually the minimum, we may omit the influence of vertex–vertex
connections on C ′. Therefore we need just calculate all sub-vertices. As a result, we obtain

C ′ =
max∑
k′=1

[C(2k′)nf (k′)]/n. (9)

4. Comparison between theory and computer simulations

To proceed, we assume the distribution function f (k′) takes the function for the log-normal
distribution [19]:

f (k′) = 1√
2πσk′ exp

[
− ln2(k′/δ)

2σ 2

]
, (10)

where δ means the median parameter and σ the standard deviation. In real networks, σ

and δ can be varied accordingly. As mentioned above, the minimum of k (or k′) is set to
be 2 (or 1). Here we should remark that this distribution (equation (10)) has been found to
appear in various systems such as financial markets [20], sizes of ferromagnetic nanoparticles
fabricated in experiments [21], the number of molecules in recursive states in replicating
catalytic networks [22] and so on. (In fact, it is straightforward to extend to other systems with
different sorts of distributions, e.g., Poisson distribution, � distribution, Gaussian distribution
and so on, if necessary.) For this model, we make the average connections δ of the log-normal
distribution be kaverage/2. On the other hand, we perform computer simulations for comparison.
In the simulations, we used 1000 sub-vertices, and the simulation data shown in figures 2 and
3 were values averaged from 10 groups of raw data. At smaller p, the characteristic path length
predicted by the theory is larger than that obtained from the simulations, and for larger p, such
difference becomes very small (figure 2). However, regarding the clustering coefficient, the
predictions by the theory are always larger than the simulations for the full range of p, and the
difference between the predictions by the theory and by the simulations is smaller at small p
than at large p (figure 3). In general, figures 2 and 3 show that the developed theory agrees with



8242 Y W Chen et al

(a) (b)

(c)

Figure 2. Average characteristic path length l′ versus p for various distribution parameters, σ , δ

and max, obtained by computer simulations (dashed lines) and theoretical analysis (equation (8),
solid lines), respectively.

the computer simulations (at least qualitatively), which shows the validity of the theoretical
formulae (8) and (9). Thus, we may convince ourselves to do the following comparisons
(table 2) and numerical calculations (figures 4–6). Details will be presented in what follows.

5. Characteristics of the Watts–Strogatz network model developed by including degree
distribution

Firstly, we compare the Watts–Strogatz network model developed by including degree
distribution with the original Watts–Strogatz network model, see figure 4. We have set
δ = k/2. In the case of the distribution of the number of the connections (namely, the
existence of f (k′)), the curve l′ of the Watts–Strogatz network model developed by including
degree distribution can be changed, in comparison with that of l of the original Watts–Strogatz
network model. In the mean time, the difference between the curve of C ′ and that of C is small
enough to be neglected. More results obtained by adjusting the distribution parameters, σ and
δ, can be found in figures 5 and 6. We investigate l′ and C ′ of the Watts–Strogatz network
model developed by including degree distribution. In detail, for a network with a fixed number
of sub-vertices n, we keep max to be constant and change σ and δ in order to make the sum
of the fraction of the number of sub-vertices with the same k′ nearly equal to 1 (equation (4)).
The results are displayed in figures 5 and 6.

Figures 5 and 6 show a framework similar to that of the Watts–Strogatz small-world
networks, as already displayed in figure 4. We find that when p is small, the characteristic
path length drops quickly while the clustering coefficient almost remains. Thus, the values of
the ratios can be adjusted by choosing appropriate distribution parameters, σ and/or δ.
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(a)

(b) (c)

Figure 3. Clustering coefficient C′ versus p for various distribution parameters, σ , δ and max,
obtained by computer simulations (dashed line) and theoretical analysis (equation (9), solid lines),
respectively.

Figure 4. Ratios of characteristic path lengths l(p)/ l(0) (equation (1)) and l′(p)/l′(0)

(equation (8)) and clustering coefficients C(p)/C(0) (equation (2)) and C′(p)/C′(0)

(equation (9)) as a function of log10(p). The dashed line reflects the ratio of l of the Watts–
Strogatz network model and the dash-dotted line reflects that of l′ of the Watts–Strogatz network
model developed by including degree distribution. The other two lines are respectively for C and
C′, which, however, are overlapped.

Figure 5 shows that when σ gets smaller, the framework of the curves moves left, especially
at low p. Comparing with figure 4, we find that when σ gets closer to 0, the behaviour is closer
to the original Watts–Strogatz network model, as expected. What is more, figure 6 displays
that when σ becomes lower, the lines of C ′ rise up but always remain the same trend.

In short, we find that the Watts–Strogatz network model developed by including degree
distribution has many characteristics similar to those of the Watts–Strogatz network model.
We also find that if the standard deviation σ is very small, the whole characteristics of the
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Figure 5. Ratio of characteristic path lengths l′(p)/l′(0) (equation (8)) as a function of log10(p)

for various distribution parameters σ and δ. All the couples of σ and δ are chosen to satisfy the
sum rule in equation (4): σ = 0.1 and δ = 100 (solid line); σ = 0.35 and δ = 50 (dashed line);
σ = 0.5 and δ = 30 (dotted line).

Figure 6. Clustering coefficient C′(p) (equation (9)) versus log10(p) for various distribution
parameters σ and δ. All the couples of σ and δ are chosen to satisfy the sum rule in equation (4):
σ = 0.1 and δ = 100 (solid line); σ = 0.35 and δ = 50 (dashed line); σ = 0.5 and δ = 30 (dotted
line).

Watts–Strogatz network model developed by including degree distribution are very close to
those of the original Watts–Strogatz network model. Furthermore, the features of the figures
can be changed accordingly by adjusting the distribution parameters. From this point of view,
the Watts–Strogatz network model developed by including degree distribution seems to be
more flexible than the original Watts–Strogatz network model, as expected.

Because of the flexibility of the Watts–Strogatz network model developed by including
degree distribution, it is expected to have more applications. In the developed Watts–Strogatz
network model, the sub-vertices are assigned into different groups (vertices) with different
k′, which seems more suitable for social situations since the phenomenon of a hierarchical
society is common in life. In other words, such hierarchical phenomena may be expected to
be treated by using the developed Watts–Strogatz network model.
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Table 2. Comparison between the Watts–Strogatz network model developed by including degree
distribution and real networks with the small-world property. Here C(w − s) means the results
obtained from the original Watts–Strogatz network model (equation (2)) and C′(theoretical) the
results obtained from the formula (equation (9)) of the developed Watts–Strogatz network model.

Real networks Max σ C′(theoretical) C(w − s) C(actual)

LANL co-authorship [4, 5] 13 0.4 0.48 0.58 0.43
Math. co-authorship [6] 44 0.54 0.54 0.48 0.59
Neurosci. co-authorship [6] 50 0.6 0.63 0.60 0.76
E. coli, substrate graph [7] 15 0.7 0.42 0.54 0.32
Words, co-occurrence [8] 290 1.1 0.47 0.69 0.44
C. Elegans [1] 50 1.3 0.21 0.62 0.28

In view of the above analysis of the characteristics, we are now in a position to compare
the Watts–Strogatz network model developed by including degree distribution with real
networks with the small-world property, as shown in table 2. For this comparison, we
set δ = k(actual)/2. And we also use l(actual) to calculate p and then compare the theoretical
C ′(theoretical) and the actual C(actual). Table 2 shows that some model real networks with
the small-world property, which do not fit well in the Watts–Strogatz network model (as
represented by C(w − s) herein), can fit satisfactorily in the Watts–Strogatz network model
developed by including degree distribution (i.e., C ′(theoretical)). In detail, C ′(theoretical)
obtained for the developed Watts–Strogatz network model is compared favourably with
C(actual) of the real small-world networks. Such good agreement shown in table 2 shows that
the developed network model has its reasonable and physical factors, namely, the introduction
of degree distribution.

6. Discussion and conclusion

Here some comments are in order. It is known that a large number of real networks are
referred to as scale free because they show a power-law degree distribution. For various
degree distributions including power law, it is no doubt that degree distribution functions P(k)

should always satisfy the sum rule
∑

k P (k) = 1 (equation (4)). For scale-free networks,
P(k) is given by the known expression P(k) = k−γ , with degree exponent γ satisfying
2 < γ < 3 [23]. In our work, while the detailed expression for P(k) is a variant depending
on various types of real networks with the small-world property (which corresponds to the
fact that P(k) can be varied in different networks, as also implied by the scale-free network
model), it is given by a certain distribution function, which can be any reasonable distribution
functions (that satisfy the sum rule) corresponding to real networks with the small-world
property. Thus, the Watts–Strogatz network model developed by including degree distribution
seems more flexible to explain real networks with the small-world property whereas other
existing network models like the scale-free network model have not yet been clearly shown
to work for this purpose. It is worth noting that the developed Watts–Strogatz network
model is presented only for the real networks with the small-world property, to improve the
comparison between characteristic path lengths and clustering coefficients predicted by the
original Watts–Strogatz network model and those of the real networks with the small-world
property. For model calculations, we take the distribution function to be the well-known log-
normal distribution, simply because this distribution function is common in nature. However,
whichever distribution function should be used for a degree distribution depends on specific
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networks concerned. In this direction, the developed Watts–Strogatz network model can help,
as expected.

In the developed Watts–Strogatz network model, we have used a predefined degree
distribution to demonstrate the virtues of the developed model in reproducing features of
real-world networks with the small-world property, namely both high network clustering and
short characteristic path length. The inclusion of the degree distribution is both reasonable
and physical because there should be a certain degree distribution for any networks with
the small-world property (however, the detailed function for the distribution is unknown, or
alternatively, dependent on different small-world networks).

Owing to the interesting flexible features of the Watts–Strogatz network model developed
by including degree distribution, it is expected to help in the future analysis of economics and
other social fields with the small-world property.
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